\(\int \frac {(f+g x^2) \log (c (d+e x^2)^p)}{x} \, dx\) [313]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=-\frac {1}{2} g p x^2+\frac {g \left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{2 e}+\frac {1}{2} f \log \left (-\frac {e x^2}{d}\right ) \log \left (c \left (d+e x^2\right )^p\right )+\frac {1}{2} f p \operatorname {PolyLog}\left (2,1+\frac {e x^2}{d}\right ) \]

[Out]

-1/2*g*p*x^2+1/2*g*(e*x^2+d)*ln(c*(e*x^2+d)^p)/e+1/2*f*ln(-e*x^2/d)*ln(c*(e*x^2+d)^p)+1/2*f*p*polylog(2,1+e*x^
2/d)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2525, 45, 2463, 2436, 2332, 2441, 2352} \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\frac {1}{2} f \log \left (-\frac {e x^2}{d}\right ) \log \left (c \left (d+e x^2\right )^p\right )+\frac {g \left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{2 e}+\frac {1}{2} f p \operatorname {PolyLog}\left (2,\frac {e x^2}{d}+1\right )-\frac {1}{2} g p x^2 \]

[In]

Int[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x,x]

[Out]

-1/2*(g*p*x^2) + (g*(d + e*x^2)*Log[c*(d + e*x^2)^p])/(2*e) + (f*Log[-((e*x^2)/d)]*Log[c*(d + e*x^2)^p])/2 + (
f*p*PolyLog[2, 1 + (e*x^2)/d])/2

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2463

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rule 2525

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {(f+g x) \log \left (c (d+e x)^p\right )}{x} \, dx,x,x^2\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \left (g \log \left (c (d+e x)^p\right )+\frac {f \log \left (c (d+e x)^p\right )}{x}\right ) \, dx,x,x^2\right ) \\ & = \frac {1}{2} f \text {Subst}\left (\int \frac {\log \left (c (d+e x)^p\right )}{x} \, dx,x,x^2\right )+\frac {1}{2} g \text {Subst}\left (\int \log \left (c (d+e x)^p\right ) \, dx,x,x^2\right ) \\ & = \frac {1}{2} f \log \left (-\frac {e x^2}{d}\right ) \log \left (c \left (d+e x^2\right )^p\right )+\frac {g \text {Subst}\left (\int \log \left (c x^p\right ) \, dx,x,d+e x^2\right )}{2 e}-\frac {1}{2} (e f p) \text {Subst}\left (\int \frac {\log \left (-\frac {e x}{d}\right )}{d+e x} \, dx,x,x^2\right ) \\ & = -\frac {1}{2} g p x^2+\frac {g \left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{2 e}+\frac {1}{2} f \log \left (-\frac {e x^2}{d}\right ) \log \left (c \left (d+e x^2\right )^p\right )+\frac {1}{2} f p \text {Li}_2\left (1+\frac {e x^2}{d}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.98 \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\frac {1}{2} g \left (-p x^2+\frac {\left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{e}\right )+\frac {1}{2} f \left (\log \left (-\frac {e x^2}{d}\right ) \log \left (c \left (d+e x^2\right )^p\right )+p \operatorname {PolyLog}\left (2,\frac {d+e x^2}{d}\right )\right ) \]

[In]

Integrate[((f + g*x^2)*Log[c*(d + e*x^2)^p])/x,x]

[Out]

(g*(-(p*x^2) + ((d + e*x^2)*Log[c*(d + e*x^2)^p])/e))/2 + (f*(Log[-((e*x^2)/d)]*Log[c*(d + e*x^2)^p] + p*PolyL
og[2, (d + e*x^2)/d]))/2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(156\) vs. \(2(74)=148\).

Time = 0.31 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.91

method result size
parts \(\frac {\ln \left (c \left (e \,x^{2}+d \right )^{p}\right ) g \,x^{2}}{2}+\ln \left (c \left (e \,x^{2}+d \right )^{p}\right ) f \ln \left (x \right )-p e \left (\frac {g \,x^{2}}{2 e}-\frac {g d \ln \left (e \,x^{2}+d \right )}{2 e^{2}}+2 f \left (\frac {\ln \left (x \right ) \left (\ln \left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )+\ln \left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )\right )}{2 e}+\frac {\operatorname {dilog}\left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )+\operatorname {dilog}\left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 e}\right )\right )\) \(157\)
risch \(\frac {\ln \left (\left (e \,x^{2}+d \right )^{p}\right ) g \,x^{2}}{2}+\ln \left (\left (e \,x^{2}+d \right )^{p}\right ) f \ln \left (x \right )-\frac {g p \,x^{2}}{2}+\frac {p g d \ln \left (e \,x^{2}+d \right )}{2 e}-p f \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )-p f \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )-p f \operatorname {dilog}\left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )-p f \operatorname {dilog}\left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )+\left (\frac {i \pi \,\operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2}}{2}-\frac {i \pi \,\operatorname {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right ) \operatorname {csgn}\left (i c \right )}{2}-\frac {i \pi {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{3}}{2}+\frac {i \pi {\operatorname {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}^{2} \operatorname {csgn}\left (i c \right )}{2}+\ln \left (c \right )\right ) \left (\frac {g \,x^{2}}{2}+f \ln \left (x \right )\right )\) \(278\)

[In]

int((g*x^2+f)*ln(c*(e*x^2+d)^p)/x,x,method=_RETURNVERBOSE)

[Out]

1/2*ln(c*(e*x^2+d)^p)*g*x^2+ln(c*(e*x^2+d)^p)*f*ln(x)-p*e*(1/2*g*x^2/e-1/2*g*d/e^2*ln(e*x^2+d)+2*f*(1/2*ln(x)*
(ln((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+ln((e*x+(-d*e)^(1/2))/(-d*e)^(1/2)))/e+1/2*(dilog((-e*x+(-d*e)^(1/2))/(-
d*e)^(1/2))+dilog((e*x+(-d*e)^(1/2))/(-d*e)^(1/2)))/e))

Fricas [F]

\[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\int { \frac {{\left (g x^{2} + f\right )} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )}{x} \,d x } \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x,x, algorithm="fricas")

[Out]

integral((g*x^2 + f)*log((e*x^2 + d)^p*c)/x, x)

Sympy [F]

\[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\int \frac {\left (f + g x^{2}\right ) \log {\left (c \left (d + e x^{2}\right )^{p} \right )}}{x}\, dx \]

[In]

integrate((g*x**2+f)*ln(c*(e*x**2+d)**p)/x,x)

[Out]

Integral((f + g*x**2)*log(c*(d + e*x**2)**p)/x, x)

Maxima [F]

\[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\int { \frac {{\left (g x^{2} + f\right )} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )}{x} \,d x } \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x,x, algorithm="maxima")

[Out]

integrate((g*x^2 + f)*log((e*x^2 + d)^p*c)/x, x)

Giac [F]

\[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\int { \frac {{\left (g x^{2} + f\right )} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )}{x} \,d x } \]

[In]

integrate((g*x^2+f)*log(c*(e*x^2+d)^p)/x,x, algorithm="giac")

[Out]

integrate((g*x^2 + f)*log((e*x^2 + d)^p*c)/x, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{x} \, dx=\int \frac {\ln \left (c\,{\left (e\,x^2+d\right )}^p\right )\,\left (g\,x^2+f\right )}{x} \,d x \]

[In]

int((log(c*(d + e*x^2)^p)*(f + g*x^2))/x,x)

[Out]

int((log(c*(d + e*x^2)^p)*(f + g*x^2))/x, x)